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This article studies the causal effect of individuals’ overconfidence and bounded rationality
on information aggregation by using a new multiperiod game in which agents are rewarded
for submitting accurate estimates of an unknown asset’s value based on (i) their private in-
formation and (ii) others’ past estimates. By carrying out laboratory sessions of this game in
which subjects’ overconfidence is a treatment variable, I find that overconfidence affects the
information aggregation process by increasing the dispersion of estimates and decreasing
the rate of estimates’ convergence. However, even when subjects are not overconfident, qual-
itatively similar deviations from the fully rational model predictions are observed. I show
that this can be explained by subjects’ strategic response to errors. (JEL G12, C92, D83)

Overconfidence—individuals’ tendency to overestimate their abilities and
information—has been documented by a large body of psychology literature
(see, for example, Fischhoff, Slovic, and Lichtenstein 1977; and Kahneman,
Slovic, and Tversky 1982). In finance, it has been incorporated into models
of asymmetric information to rationalize a set of long-standing asset pricing
“anomalies.” For example, Odean (1998) shows that in a variety of models over-
confidence leads to excess trading volume, and in some settings can also lead
to higher price volatility and lower price quality. Daniel, Hirshleifer, and Sub-
rahmanyam (1998) find that overconfidence can cause positive returns autocor-
relation in the short run (e.g., momentum) and negative returns autocorrelation
in the long run. In these settings, overconfident agents exhibit inefficient infor-
mation processing as they overweight a particular information set compared
with what a perfectly Bayesian agent would do. For example, an overconfident
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agent may overweight her private signal relative to the information revealed by
aggregate quantities (e.g., prices).

In this article, I suggest an alternative reason that may cause agents to
rationally “overweight” their information: they respond to the errors of others.
If some people make mistakes by failing to follow a fully rational behavior, then
aggregate quantities, which facilitate the process of information transmission,
may contain errors (see Akerlof and Yellen 1985). In such cases, a rational agent
would strategically respond to these errors (see Camerer 2003) by discounting
the informativeness of fellow traders’ actions and overweighting their own
private signal.

To examine these issues, I devise a simple, nonstrategic information aggre-
gation game focused on how agents process private information and learn from
each other. In the game, there are two players. Each receives (i) a private signal
and (ii) a private-signal precision. The players’ task is to estimate an unknown
fundamental value, around which their signals are drawn. The game consists
of multiple decision turns in which players first observe each other’s previ-
ously submitted estimates, and then simultaneously submit new ones. Players’
payoffs do not come from trading but rather depend on the accuracy of their
individual estimates. Therefore, players’ estimates are a solution to a Bayesian
updating problem in which private information is weighted relative to the infor-
mation learned from the other players’ estimates. The more confidence a player
has in her private information, the less she adjusts her estimates across turns.
Over time (under full rationality), players are predicted to perfectly aggregate
their private information, converging to the rational expectations level.

I extend the fully rational baseline model in two ways. First, I derive best
responses when players are overconfident. In this case, players’ confidence in
their private signal exceeds their objective signal precision. Second, I derive
players’ best responses when interacting with others prone to have mean-zero
errors. I show that in this case, players discount observed estimates of others.
In both cases, I find that the level of “disagreement” among players, measured
by their estimates’ dispersion, exceeds the fully rational benchmark.

I conduct experimental sessions in which subjects participate in the informa-
tion aggregation game described above and are rewarded in cash based on their
decisions. Private signal precision (high or low) is determined by the subjects’
rank on a task that takes place at the beginning of sessions. In some sessions, de-
noted as baseline treatment (BLT), participants roll a die and privately observe
the outcome. In other sessions, denoted as overconfidence treatment (OCT),
participants answer a short Scholastic Aptitude Test (SAT) quiz, similar to a
treatment used by Camerer and Lovallo (1999). In both treatments, subjects
are not told what their rank is, but are made aware of the way it is deter-
mined. While the die roll is a neutral treatment, the SAT is not; many previous
studies document the tendency of individuals to perceive themselves as “better
than average” (e.g., Svenson 1981). Therefore, subjects who mistakenly believe
that they are better than their peers on the SAT quiz will also mistakenly believe
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that their signal precision is better than it really is. They will be overconfident
about their private signal—not by conjecture, but rather by the experimental
design.

I use the observed adjustment rates to back out subjects’ implied confidence
in their signal and compare those to the objective precisions. I find that, con-
sistent with the treatment design, subjects are (on average) overconfident in the
OCT but not in the BLT. In particular, overconfidence seems to be concentrated
among subjects that have the lowest signal precision. Furthermore, observed
overconfidence seems to have an adverse effect on information aggregation.
Comparing the results across treatments, I find that in the OCT, estimates’ dis-
persions are substantially higher and the rate of estimates’ convergence is lower.
However, comparing the results in the BLT with the predictions of the fully
rational model, I find deviations that are qualitatively similar to the differences
across treatments. To explain this, I estimate an extension of the fully rational
model, which accounts for best responses to errors and finds support for it.

The information aggregation game used in this article abstracts from many
aspects typically embedded in trading markets, such as risk-sharing, portfolio
choice, strategic behavior, and optimal order submission. Central to the game’s
tractability is the fact that participants’ payoffs are not a fixed sum (as is the
case when trading is involved). As such, the game does not generate prices,
allocations, and trading volume, and therefore cannot be used to provide direct
observation on these quantities. I am able to derive a tractable model that
captures how players integrate information obtained privately with information
indirectly revealed to them from aggregate quantities. I focus on this aspect
since it captures the channel through which overconfidence is hypothesized to
affect agents’ decisions in markets.

The results obtained in this study can be relevant to the examination of
overconfidence in financial markets in a number of ways. First, it shows that
the two sources for inefficient learning—overconfidence and errors—can have
economically similar effects on information aggregation. Models of overcon-
fidence could benefit from including the two sources of inefficiencies and
providing predictions that separately identify them. Second, the mechanism
studied in this article shares some important features with markets populated
by asymmetrically informed agents. In both cases, the object of interest is the
way private information is mapped into agents’ valuation of the underlying
asset. While the mechanism connecting the inputs and outputs differs, in both
cases, it relies on Bayesian updating to determine how agents weight their pri-
vate information with that implied from others’ behavior.1 As such, the findings
shed light on the ways deviations from rationality affect this updating.

1 Indeed, the idea that prices reflect a weighted average of traders’ individual estimates about the fundamental
value is very common in information-based asset-pricing models (Diamond and Verrecchia 1981), and the notion
that speculative volume can be driven by traders’ differing valuations is discussed by Varian (1986), Harris and
Raviv (1993), and Kandel and Pearson (1995), among others.
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The remainder of the article is organized as follows. Section 1 summarizes the
related literature. Section 2 sets up the theoretical model and derives the unique
subgame-perfect Nash equilibrium. Section 3 describes the experimental design
mirroring this model. Section 4 discusses and analyzes the results. I summarize
in Section 5.

1. Literature Review

In this section, I focus on the most closely related experimental and psychology
work on overconfidence, at the individual and market level, and relate it to this
study. In the interest of brevity, I omit a number of strands of literature including
theoretical asset pricing models studying the effect of traders’ overconfidence
and work on social learning (see Bikhchandani, Hirshleifer, and Welch 1998
for a survey).

Kirchler and Maciejovsky (2002) measure individuals’ miscalibration and
how it is affected by trading. They allow subjects to trade securities that pay
stochastic dividends over a number of periods in double auction markets. At
the beginning of each period, subjects are asked to provide an assessment of the
distribution of trading prices to be observed during the period. The authors use
these predictions to construct two different measures of overconfidence. They
find substantial heterogeneity in subjects’ levels of over-/underconfidence but
find no aggregate overconfidence.

Biais et al. (2002) correlate individual measures of overconfidence and self-
monitoring, collected through surveys at the beginning of sessions, to their
earnings from trading in an asset market similar to the one described in Plott
and Sunder (1988). Absent private values, this setting is subject to winner’s
curse since participants hold imperfect private information. Thus, no-trade
results apply. The authors find that subjects prone to overconfidence generate
relatively low earnings and those that exhibit high self-monitoring abilities
generate relatively high earnings. At the same time, they do not find that
overconfidence leads to more intense trading.

Deaves, Lüders, and Luo (2005) study the link between miscalibration, gen-
der, and trading intensity. The authors design an experiment in which subjects’
signal quality depends on the accuracy of their responses on a survey. They
find that overconfidence leads to increased trading activity among subjects.
In contrast with other studies, they find no difference in overconfidence and
trading intensity between men and women.

Glaser and Weber (2007) conduct a survey among broker investors to assess
their overconfidence as expressed in their miscalibration and better than the
average effect (as well as illusion of control/unrealistic optimism). Results
from 215 individuals are matched with their own trading volume. The authors
find that the two measures yield distinctively different results: above average
effect, but not miscalibration, is related to trading volume.
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There are a number of important differences between these papers and this
study. First, I measure participants’ over-/underconfidence that is implicit in
their decisions by estimating a structural model of behavior. That is, instead
of using direct elicitation, I estimate revealed miscalibration as it applies in
the information aggregation game studied here. As a result, the approach in
this study is more robust to survey methodology; it is quite possible that while
individuals are not able to communicate probabilistic assessments well, they
are able to incorporate them into their decisions.

Second, the game played in this study differs substantially from the canonical
double-auction markets, used by virtually all experimental asset markets. The
tractability of the mechanism used in this study allows one to examine a rich
set of aggregate measures and to generate clear level predictions. In contrast,
most previous work almost exclusively dealt with comparative static tests. For
example, no study that I know of looks at the effect of overconfidence on the
precision of agents’ valuation of the underlying asset, while it is clearly of
central interest to economists.

Third, most previous work in this area follows the approach of correlating
individuals’ psychological attributes and their behavior in markets. As such, it
was centered on individual level results. The focus in this article is on making
some initial steps toward understanding the aggregation process of individuals’
biases.

The experimental design in this study makes use of two distinct forms
of overconfidence: miscalibration and better-than-average effect. Both forms
have been studied extensively in cognitive psychology. Miscalibration refers
to individuals’ tendency to overestimate the accuracy of their knowledge
(see Kahneman, Slovic, and Tversky 1982 for a review). Studies of miscal-
ibration typically involve the elicitation of confidence intervals: subjects are
presented with a set of open-ended questions (e.g., “How much does a fully
loaded Boeing 747 weigh?”) and asked to provide a range of values such
that they are 90% confident that the unknown quantity would fall inside the
stated range. Evidence suggests that subjects report too narrow confidence in-
tervals. That is, the fraction of answers landing inside the confidence interval
is substantially lower than 90%. An alternative design presents subjects with
multiple-choice questions and asks subjects to estimate the probability that the
answer they pick is correct. Once again, in aggregate, the fraction of correct
answers is lower than the stated probabilities. Studies of the better-than-average
effect suggest that people are overconfident about their ability relative to oth-
ers. For example, Svenson (1981) asked groups of subjects to compare their
driving ability (skill and safety) to their peers in a group. Around 70–80%
rated themselves as above median. This phenomenon has been documented in
various other areas: health (Larwood 1978), managerial skills (Larwood and
Whittaker 1997), and business success (Cooper, Woo, and Dunkelberg 1988).
While I do not suggest that, in general, these two forms of overconfidence are
related, I make use of the better-than-average effect to generate miscalibration:
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since subjects overestimate their relative ability to answer correctly the SAT
quiz questions, they should also overestimate the precision of their private
signal.

2. Theory

2.1 General
In this game, there are two players, both trying to estimate the realization of a
random variable v, referred to as “fundamental value,” where v is distributed
uniformly between L and H . Each player is assigned a type: ti ∈ {h, l} such
that one player is of type h and the other is of the complementary type l. A
player of type h receives a perfect signal while a player of type l receives an
imperfect signal:2

� perfect signal: sh
i = v;

� imperfect signal: sl
i = v + ei , where ei

iid∼ U [−Y, Y ].

Players’ type is determined as follows. Both players (i and j) independently
draw quantities qi and q j from a uniform distribution with a support [0, 1].
The player with the highest q is assigned to be type h while the other player
is assigned to be type l. For player i , the probability that she is of type h is qi ,
since Pr(q j < qi |qi ) = qi .

For now, assume that subject’s belief about the probability that she is of type
h, denoted by q̃i , is correct (i.e., q̃i = qi ). Thus, the realization {si , qi } makes
up subject i’s private information set.

The game consists of three stages: at the beginning of each turn, t , both
players simultaneously submit an action, ai ,t , which comes in the form of
a numerical estimate of the realized fundamental value. At the end of each
turn, both players’ estimates are announced. As I show later, three turns are
needed for players to arrive at the fully revealing equilibrium. The intuition is
straightforward. There are two dimensions of uncertainty for each player—the
other player’s signal and her signal precision. Since each turn can allow for at
most one new dimension to be observed, players need to observe each other’s
estimates for two turns, arriving at full revelation in turn three.

At the end of the game, one turn is randomly chosen (with equal probability)
and players receive a payoff πi (ai,t , v), ensuring that expected utility is max-
imized at the expected value of v: E(v|Ii,t ) ∈ arg max E[ui (πi (ai,t , v))|Ii,t ],
where Ii,t represents player i’s information set (both private and public) in turn
t . Put differently, the payoff scheme ensures that if players act myopically, they
minimize the forecasting error at each turn of the game. Note that each player
is paid according to the accuracy of their actions, irrespective of the actions
of the other player. Hence, this is not a fixed-sum game (unlike most trading

2 Subscripts i, j index the players.
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institutions). This feature is important in neutralizing the payoff externalities
that typically arise in market settings, thereby removing strategic incentives.

2.2 Optimal actions: full rationality
I start by characterizing the fully rational solution of this game for players
i, j , denoted by a∗

i , a∗
j . Recall that the game starts with the players receiving

their private information, {si , qi }, followed by three decision turns. Since the
exogenous information is fixed across the turns, subjects revise their estimates
due to endogenous information only, which is obtained by observing others’
actions. Also, since exactly one player is perfectly informed but the identity
of that player is uncertain, optimal actions are a convex combination of play-
ers’ signals. How far one’s estimate is from her signal would depend on the
confidence she has in her signal.

While I characterize the solution for the full range of signals in the Appendix,
in this section I focus on the “interior case” where si , s j ∈ [L + Y, H − Y ].
The interior case gives rise to tractable predictions, allows one to obtain clear
intuition about the dynamics of this game, and can be made arbitrarily large
relative to the “exterior case.”3

Proposition 1. There exists a Perfect Bayesian Equilibrium (PBE) in pure
strategies, where:

– in turn 1 {a∗
i,1 = si , a∗

j,1 = s j }
– in turn 2 {a∗

i,2 = qi si + (1 − qi )a j,1, a∗
j,2 = q j s j + (1 − q j ) ai,1}

– in turn 3 {a∗
i,3 = Ind

(qi >
a j,2−ai,1
a j,1−ai,1

)
si + Ind

(qi <
a j,2−ai,1
a j,1−ai,1

)
a j,1 + Ind

(qi = a j,2−ai,1
a j,1−ai,1

)

× ( si +a j,1

2 ), a∗
j,3 = Ind

(q j >
ai,2−a j,1
ai,1−a j,1

)
s j + Ind

(q j <
ai,2−a j,1
ai,1−a j,1

)
ai,1 + Ind

(q j = ai,2−a j,1
ai,1−a j,1

)

× ( s j +ai,1

2 )}.

See the Appendix for proofs of the propositions. At the first turn, players
should announce their own signals. At the second turn, players should announce
a weighted average of their signal and the other player’s estimate. Since players
follow the equilibrium strategies, this amounts to player i weighting her signal
with the signal of player j , revealed in player j’s first turn estimate. The weight
depends on their confidence in their private information. Therefore, players that
adjust their estimates very little between turns one and two have high confidence
in their own private signals. Likewise, players that adjust their estimates very
much have low confidence in their own private signals.

Proposition 2. The pure strategy equilibrium in Proposition 1 is unique.

3 Note that the probability of an interior case goes to 1 as the relative magnitude of the signal imprecision (Y ) to
the range of v’s (H − L) goes to 0.
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The intuition for the uniqueness result is that players’ payoffs are not a fixed
sum. Therefore, they cannot do better than to provide their Bayesian estimates
of v at each turn of the game. They would deviate from this strategy if they
could learn faster the information the other player holds, but this is not feasible.

In the game, information is aggregated sequentially. In turn one, optimal
action depends on one’s own signal. In turn two, optimal action depends on
one’s own signal, as well as the other’s observed t = 1 action and own subjective
confidence. To measure the information aggregation rate, I focus on the level
of “disagreement” between players, labeled “estimates’ dispersion.”4

Definition. Estimates’ dispersion is defined as EDt = |ai,t − a j,t |.

Proposition 3. Estimates’ dispersion strictly decreases from turn one to three
(a.s.).

This result is intuitive: if players aggregate information, then their informa-
tion sets will get closer together over time. Since estimates are functions of
these sets, estimates too will get closer together. At the first turn, since players’
estimates are equal to their signals, the dispersion depends on the realization of
the signals. At the second turn, dispersion decreases since players’ estimates
are a convex combination of their own signal and the initial estimate of the
other player. At the third turn, both players submit the same estimate, bringing
the dispersion to zero.

2.3 Optimal actions: miscalibration
Recall that I am interested in understanding the effects of errors in beliefs and
errors in actions on players’ best responses. This part addresses the former
by allowing for the possibility that players hold erroneous beliefs about the
probability of being perfectly informed. That is, I set the individual subjec-
tive probability to be equal to the objective probability plus miscalibration:
q̃i = qi + MCi , where MCi denotes subject i’s miscalibration. Positive mis-
calibration represents overconfidence while negative miscalibration represents
underconfidence. I allow for arbitrary subjective beliefs as long as they are
admissible, that is, 0 ≤ q̃i ≤ 1 ∀i .5 To simplify matters, assume that subjects
are naı̈ve in the sense that they are not aware of the other player’s potential
miscalibration (this assumption will be maintained throughout this article).6

Proposition 4. If players’ miscalibration is equal to MCi and MC j , then
estimates’ dispersion is given by:

4 Results not reported here also analyzed estimates’ imprecision, a measure of the distance between the average
estimate and v. Most of the qualitative predictions carry over to this measure too.

5 This definition corresponds to the way miscalibration is defined in the cognitive psychology literature (see
Kahneman, Slovic, and Tversky 1982 for a review).

6 I naturally assume that players are not aware of their own miscalibration (see, for example, Odean 1998).
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� Turn 1: EDM
1 = |si − s j | = |e|;

� Turn 2: EDM
2 = |1 − (qi + q j ) − (MCi + MC j )||e|;

� Turn 3: EDM
3 = 0.

In this setting, miscalibration should not affect estimates’ dispersion in the
first turn. This is because first turn estimates do not reflect players’ subjective
confidence in their own signals. For the same reason, miscalibration would
impact estimates’ dispersion in the second turn. Since both players regard their
subjective beliefs to be equal to the objective precisions of their signals, they
would converge on the signal held by the player with the higher subjective
probability. Therefore, turn three estimates’ dispersion would be zero. Next,
I compare the level of estimates’ dispersion in the presence and absence of
miscalibration.

Proposition 5. The expected level of estimates’ dispersion is (weakly) greater
in the presence of average overconfidence for all turns (a.s.).

In the first and last run of the game, overconfidence should not have an effect
on estimates’ dispersion. However, if players are on average overconfident, i.e.,
MCi + MC j > 0, turn two estimates should be further apart. Player i would
adjust her estimate too little toward the estimate of player j , compared with the
fully rational case.

2.4 Optimal actions: rational response to errors
I now study the second form of deviation from full rationality. I ask: what
should player i’s best response be if she knows that player j’s actions include
some error? I address this by following the spirit of the probabilistic choice
model of Goeree and Holt (1999) and Mckelvey and Palfrey (1995), in which
players’ actions are distributed around their best responses; best responses are
formed while taking into account that others’ actions include mean-zero errors.

Specifically, I let player j’s observed action be composed of her fully rational
optimal action, as derived in Section 2.2, plus a mean-zero error:

a j,1 = a∗
j,1(s j ) + e j,1 = s j + e j,1. (1)

While player i cannot observe player j’s error, she at least accounts for the
fact that these errors have magnitude σ1. Therefore, player i’s best response in
turn two is not only a function of her information set Ii,2, but also of the error
magnitude σ1:

a∗
i,2 = a∗

i,2(Ii,2, σ1). (2)

Assume that players’ observed actions are normally distributed around the
optimal action in that turn. This assumption automatically satisfies the condition
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Figure 1
Turn two adjustment term effect (numerical example)
This figure depicts an example for the adjustment player i applies to player j’s observed turn one estimate.

that the probability of observing deviations from best response is inversely
related to their cost since the payoff function used in the experiment has the same
functional form as the normal density (both are negative quadratic exponential).
As such, this assumption is economically appealing.

After some calculations (see the Appendix for derivation), I obtain that:

a∗
i,2 = qi si + (1 − qi )

×
⎛
⎝a j,1 + 2σ2

1(φ(a j,1; si − Y, σ1) − φ(a j,1; si + Y, σ1))

erf
( √

2
2σ1

(Y − si + a j,1)
)

− erf
( √

2
2σ1

(a j,1 − si − Y )
)
⎞
⎠ . (3)

To interpret this expression, I contrast it with the solution obtained in the
fully rational model, ai,2 = qi si + (1 − qi )a j,1. Notice that player i’s response
in turn two to the actions of player j in turn one is now adjusted relative
to the fully rational case. This adjustment becomes larger the further player
j’s actions are from player i’s signal. The reason is that “extreme” esti-
mates are more likely to include a large error term relative to “moderate”
estimates. Therefore, the informativeness of extreme estimates should be dis-
counted. Figure 1 plots this adjustment term for the following parameter values:
si = 500, σ1 = 10, and Y = 30.

One can see that for “moderate” values (480–520), the adjustment is small.
Going outside that range results in a steep adjustment in the direction of the
signal possessed by player i . As a result, player i’s turn two estimate is closer
to her signal than would be the case if players were fully rational. Note that if
I did not account for the possibility of errors, player i’s estimate would appear
to be biased in the same direction as it would if she were overconfident.
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Figure 2
Interface screenshot
This is a screenshot of the interface used in this study.

3. Experimental Design

3.1 General
The experiment was run at the Haas School of Business, University of Cali-
fornia at Berkeley: a total of 12 sessions were conducted in which 72 subjects
participated; five sessions were BLT and seven sessions were OCT.7 Subjects
were recruited from undergraduate classes and had no previous experience with
similar experiments. They received a show-up payment of $5 and an additional
performance-based pay of $0–$10, which was paid in private and in cash at
the end of the session. Sessions were about 60 minutes long and included six
participants each.

At the beginning of each session, an administrator read the instructions aloud
and answered questions in private.8 Each subject entered their decision using
a computerized interface, which was built for the purpose of this experiment
(Figure 2), thus maintaining both isolation and anonymity.9

3.2 Structure
Each session started with an initial phase, followed by 10 independent and
identical rounds.10 At the beginning of each round, subjects were randomly

7 The order of treatments was determined randomly.

8 Instructions are available upon request.

9 The application developed by the author for this experiment is available upon request.

10 I report here the results from the first 10 rounds, while a few sessions were conducted with more rounds.
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assigned into “markets” consisting of two players each and were presented
with their private signal. Each round was composed of four decision turns, and
for each turn, each subject was asked to enter a decision.11 Throughout the turns,
subjects’ pairing and private information remained the same. Transition from
one turn to the next occurred only after all subjects submitted their decisions.
No time restriction was imposed.

The experiment was carried out along a single treatment: BLT or OCT,
which differed only in their initial phase. In the BLT, the initial phase consisted
of subjects privately throwing a die and observing its outcome.12 Draws were
recorded by the administrator and fed into the computer, which then determined
the rank of the draws; three of the subjects, with the highest draws, were classi-
fied as “perfectly informed” while the other three, with the lowest draws, were
classified as “imperfectly informed” (ties were resolved randomly). Subjects
observed their own draw but not the draws of other participants.

In the OCT, subjects were asked to answer 20 multiple-choice SAT questions
(taken from sample tests that were posted on the College Board website). Scores
were recorded by the computer, which then ranked subjects according to the
number of correct answers, as a primary key, and by the length of time required
to complete the quiz, as a secondary key.

In both treatments, subjects were not told what their rank was but were made
aware of the way it was determined. Altering the procedure by which precision
of signals was determined was designed to make subjects overconfident (on
average) about their private signal in the OCT. While the die throw is a neutral
treatment, the SAT is not; many previous studies document the tendency of
individuals to perceive themselves as “better than average” (e.g., Svenson
1981). Therefore, subjects who mistakenly believe that they are better than their
peers on the SAT quiz will also mistakenly believe that their signal precision is
better than it really is. They will be overconfident about their private signal—not
by conjecture, but rather by the experimental design.

The choice of using SAT questions was deliberate and intended to bias the
results in favor of the null of no treatment effect by facing subjects with a task
with which they are familiar. All subjects had taken the SAT test before and
were aware of their performance relative to their peer group.

3.3 Information
At the beginning of each round, a quantity v was drawn by the computer,
where v ∼ U [50, 950]. Then, subjects received independent signals. Subjects
classified as “perfectly informed” received a signal equal to the realization of

11 While the fourth turn is redundant under the fully rational model, it need not be redundant in practice. I also run
two sessions (not reported here) with six decision turns, but behavior during the last two turns seemed very close
to the one exhibited in turn four.

12 At the beginning of each experiment, one subject was publicly asked to examine the die and confirm that it
appeared normal.
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v (i.e., ei = 0). Subjects classified as “imperfectly informed” received a signal
equals to v + ei , where ei ∼ U [−30, 30].

All information was continuously displayed on subjects’ interfaces for them
to observe. Note that aside from the information specified above, no additional
feedback was given. In particular, the realization of the unknown quantity, v,
was not revealed at any stage of the experiment (not even at the end of the
round) and subjects did not see their earnings until the end of the session.
This may be likened to an environment where traders never get to observe
the liquidating value; subjects can only learn from their interaction with other
players, not from exogenous cues.13

3.4 Assignment
Pairing into markets was randomly determined while ensuring that exactly one
subject was perfectly informed and the other one was imperfectly informed.
This is important for three reasons: (i) it makes ex ante distribution of infor-
mation equal across all market instances, (ii) it disables subjects from easily
unveiling their type, and (iii) it allows posterior probability updating to take on
a particularly simple and intuitive form.14,15

3.5 Decisions and payoffs
At the beginning of each turn, t , subjects simultaneously submit their estimates
ai,t by entering a number on their screen. No restrictions are imposed on the
value the estimate could take. Upon receiving submissions from both subjects,
the turn comes to an end and no changes are accepted. At that point, subjects
are informed of each other’s estimate and are allowed a short transition time
into the next turn.

At the end of the session, one turn from each round was randomly drawn
and earnings (for subject i in round r ) were calculated as follows:

πi = ∑
r

c1 ∗ exp

(
− (vr − ai,r )2

c2

)
, (4)

where c1 = 100 and c2 = 50. At the end of the experiment, the number of
points earned was converted into dollars using an exchange rate of 100–1 and
subjects were paid in private and in cash. Average earnings (including the
show-up fee) are $12 with a standard deviation of $3.50.

13 In a few sessions, I have extended the number of rounds to include a full feedback round: subjects’ payoff and
the realization of v was revealed at the end of the round. Subjects discovered whether they were the perfectly or
imperfectly informed type almost immediately.

14 If two subjects submit the same estimate in turn one, most likely they are both perfectly informed and thus from
the next round on both players know their type with certainty.

15 I have conducted a few sessions (not reported in this article) with different rules of market assignment. The
problem discussed here does appear: when two perfectly informed subjects are paired together, they tend to find
out their type. Nonetheless, the qualitative features of the experiment and the results are similar.
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The payoff function in Equation (4) is chosen for a number of reasons. First,
its convexity ensures that payoffs were nonnegative everywhere. This is de-
sirable because of the bankruptcy possibility arising from subjects submitting
estimates that are distant from the fundamental value (due to errors). Gener-
ally, bankruptcy is nonenforceable in the laboratory and once encountered may
influence subjects’ decisions in a substantial manner and may result in loss of
experimental control (see Friedman and Sunder 1994). Second, the symmetry
of payoffs around the fundamental value suggests to subjects that they should
submit estimates that minimize estimation error. Indeed, the instructions re-
inforce this idea by stating that “the more precise your guesses are, the more
money you will earn at the end of the experiment.”

4. Results

4.1 Overconfidence
The game enables the study of how players incorporate their signal prevision
beliefs into their estimates. While I cannot directly observe subjects’ beliefs, I
can estimate them from the sequence of their observed decisions. Specifically,
since subject i’s turn two optimal action, under miscalibration, is given by
q̃i si + (1 − q̃i )a j,1, I estimate the following regression model:

ai,n,2 = α + β1si,n + β2a j,n,1 + εi,n. (5)

Treating the data as a panel and clustering errors by subjects, I estimate
Equation (5) for each treatment. Columns 1 and 2 of Table 1 report the results.
Under the null, subjects should put equal weight on their signal and on the other
subjects’ first turn estimates, i.e., β1 = β2 = 0.5. The results from the BLT are
in line with this prediction; the average weights assigned to own signals and
to the others’ estimates are 0.55 and 0.45, respectively. Thus, I cannot reject
the null that in the BLT, subjects are well calibrated. In contrast, the results
from the OCT suggest that subjects significantly overweight their own signal:
β1 = 0.72 and β2 = 0.28. I can reject the null that subjects are well calibrated
in the OCT in favor of the alternative that they are overconfident.

To further explore the attributes of overconfidence, I back out subjects’ signal
precision beliefs from the rate at which estimates are adjusted across turns.
Rearranging the expression for player i’s best response in turn two, ai,2 =
q̃i si + (1 + q̃i )a j,1, I get that q̃i = ai,2 − a j,1/si−a j,1 . To see how I interpret this
quantity, consider two extreme cases. In the first case, subject i does not adjust
her turn two estimate (i.e., ai,2 = s1). This behavior implies that i is sure to
hold the perfect signal; indeed, q̃i would equal 1 in this case. In the second case,
subject i adjusts her turn two estimate all the way toward subject j’s estimate
(i.e., ai,2 = a j,2). This reflects that subject i believes that subject j holds the
perfect signal; q̃i would equal 0 in this case.
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Table 1
Overconfidence and rational best response

BLT OCT BLT OCT
(1) (2) (3) (4)

Own signal 0.545 0.7167 0.392 0.6361
[0.0717] [0.0597] [0.0870] [0.0754]

Other’s estimate 0.4519 0.2839 0.6049 0.3644
[0.0722] [0.0592] [0.0872] [0.0749]

(Own signal − 0.0002 0.0001
Other’s estimate)3 [0.0001] [0.0000]
Constant 1.8514 0.1268 1.6863 0.0514

[1.2481] [1.0618] [1.1431] [1.0270]

Observations 300 408 300 408

This table reports panel-regression results of subjects’ turn two estimates. In Columns 1 and 2, I estimate the
model ai,n,2 = α + β1si,n + β2a j,n,1 + εi,n , for each treatment separately. For Rows 3 and 4, I estimate the model
ai,n,2 = α + β1si,n + β2a j,n,1 + β3(si − a j,1)3 + εi,n , for each treatment separately. ai,n,2 corresponds to subject
i’s turn two estimate in round n. Likewise, a j,n,1 corresponds to subject j’s turn one estimate in round n (subjects
i and j are matched together in round n). si,n corresponds to player i’s signal in round n. “Own signal,” “Other’s
estimate,” and “(Own signal − Other’s estimate)3” correspond to β1, β2, and β3, respectively. Standard errors,
reported in square brackets, are pulled by subjects.

Figure 3 depicts the average implied confidence across treatments (BLT
and OCT) while grouping subjects by their objective precision.16 Objective
precision is computed by bootstrapping the performance across subjects from
the initial task (i.e., SAT). A subject who obtained X correct answers in the
quiz was assigned an objective precision that corresponds to the probability
that another subject, randomly drawn, would have obtained less than X correct
answers on the quiz.

First, subjects’ objective precisions are related to their implied confidence
levels. This is true for both treatments. For example, in the BLT, subjects with
low objective precision (0 to 1/3) have an implied confidence of 13% compared
with 51% for subjects with average objective precision (1/3 to 2/3) and 89%
for subjects with high objective precision (2/3 to 1). The same qualitative
relation between objective precision and implied confidence is observed in the
OCT.

Second, overconfidence is concentrated among subjects that are the least
informed in the OCT. For each objective precision group, I test the null that
the implied confidence is equal to the objective precision. For each subject, I
average the implied confidence across rounds and compare it with her objective
precision. Therefore, each subject is treated as a single observation. With this
conservative use of data, I can reject the null that the poorly informed subjects
in the OCT are well calibrated at the 1% significance level. To get a sense for
the magnitude of these subjects’ overconfidence, I compare them to their peers

16 I excluded observations for which the implied confidence was outside the range 0–1; by doing so, I have taken
out about 15% of the observations, across both treatments.
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Objective Precision Group
0 − .33 .33 − .66 .66 − 1

(p-values)
BLT 0.1614 0.3882 0.7982
OCT 0.0010 0.5754 0.2273

Figure 3
Implied confidence across treatments
This figure reports average implied confidence across subjects. Implied confidence is computed as the ratio
of own estimate change from turn one to turn two over the absolute difference between subjects’ turn one
estimates. The left panel depicts the results for the BLT and the right panel depicts the results for the OCT. Within
each treatment, subjects are assigned into one of three objective precisions groups: [0−1/3), [1/3−2/3], and
(2/3−1]. The table reports p-values associated with testing the null that the implied confidence is equal to the
objective precision (using a nonparametric test). I exclude observations in which the implied confidence is not
an admissible probability (outside the range 0–1).

in the BLT. I find that the former have almost four times higher confidence in
their private information than the latter.

4.2 Estimates’ dispersion
4.2.1 Aggregation of information. Theory predicts that players aggregate
and disseminate private information across turns by observing each other’s
estimates. Therefore, estimates’ dispersion, EDr,t , which is the absolute value of
the difference between players’ estimates in a given turn, |ai,t − a j,t |, decreases
across turns. That is, players’ estimates get closer together over turns.

To test this prediction, I calculate the average level of estimates’ dispersion
across turns and treatments (reported in Table 2). The results suggest that
subjects aggregate information in both treatments. I see that the estimates’
dispersion level decreases across turns in both treatments. In the BLT, the
estimates’ dispersion level start at around 17.6, decreasing to 5.0 by the fourth
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Figure 4
Convergence of estimates’ dispersion across turns
The figure depicts the convergence rate of estimates’ dispersion across turns in the BLT (solid line) and
OCT (dashed line). The rates are obtained from estimating the model EDi,t = α1 + β1Dummyi + β2 ln t +
β3 Dummyi ln t + εi,t , treating the data as a panel (market instances and turns). EDi,t is the estimates’ dispersion
in turn t of observation i , Dummyi takes the value 1 if observation i is obtained in the OCT and 0 otherwise, and
t is the turn number. Robust standard errors are reported in square brackets.

turn. In the OCT, estimates’ dispersion level starts at around 17.0 and decreases
to about 9.7 by the fourth turn. To obtain a field for the magnitude of the results,
recall that in each instance of the game, there is exactly one subject who receives
a perfect signal and another subject who receives an imperfect signal. Since
the imperfect signal is uniformly distributed around the liquidating value with
bounds of ±30, if subjects did not aggregate information at all, estimates’
dispersion would have been constant at 15.

I test the statistical significance of the null that the level of estimates’ dis-
persion is constant across subsequent turns using a nonparametric Wilcoxon
matched-pairs signed-ranks test. The p-values from these tests are reported in
rows 4–6 of Table 2 for the BLT and rows 10–12 of that table for the OCT. In
the BLT, the level of estimates’ dispersion decrease from turn one to turn three
but not after that, in line with the rational model. In the OCT, I find a similar
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Table 2
Estimates’ dispersion across turns and treatments

Turn 1 2 3 4
BLT

(average levels)
Observed ED 17.57 7.51 5.62 5.00
Fully rational ED 14.95 4.03 0.00 0.00

(p-values)
ED1 = ED2 [0.000]
ED2 = ED3 [0.000]
ED3 = ED4 [0.280]
EDObserved = EDRational [0.000] [0.000] [0.000] [0.000]

OCT

(average levels)
Observed ED 16.97 11.95 13.19 9.74
Fully rational ED 15.34 3.80 0.00 0.00

(p-values)
ED1 = ED2 [0.000]
ED2 = ED3 [0.358]
ED3 = ED4 [0.000]
EDObserved = EDRational [0.009] [0.000] [0.000] [0.000]

EDBLT
t = EDOCT

t [0.470] [0.000] [0.000] [0.000]

This table reports the average level of the estimates’ dispersion (ED) and the p-values (in square brackets) from
nonparametric tests comparing the observed levels across turns, across treatments, and with the predicted levels
derived from the fully rational model. The top/bottom panel reports the results for the BLT/OCT. The first two
rows in each panel report the average ED level, for each turn separately, observed in the data and predicted by
the fully rational model. Rows 3–5 of each panel report the p-values when testing the null that the observed ED
level is constant across subsequent turns. The last row of each panel reports p-values associated with testing the
null that observed and predicted levels are equal. The last row of the table reports the p-values resulting from
the equality test across treatments.

pattern, delayed by a turn: there is a significant drop going from turn one to
turn two and from turn three to turn four but not in between.

To quantify the convergence rate and measure how it is affected by the
treatment, I estimate the following regressions model (treating the data as a
panel), which interacts a treatment dummy with the log of the turn number:

EDi,t = α1 + β1 Dummyi + β2 ln ti + β3 Dummyi ln ti + εi,t , (6)

where Dummyi takes the value of 1 if the observation was obtained under the
OCT and 0 otherwise, and t is the turn number. This specification allows me to
test parametrically the following hypotheses.

� Estimates’ dispersion does not decrease across turns, i.e., β2 = 0 and β2 +
β3 = 0.

� There is no difference, across treatments, in the initial level of estimates’
dispersion, i.e., β1 = 0.

� There is no difference across treatments in the rate of estimates’ dispersion
convergence, i.e., β3 = 0.
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The estimation results are reported and depicted in Figure 4. I find that in
both treatments, the initial estimates’ dispersion is virtually identical; β̂1 is not
statistically different from zero. This is consistent with the theoretical predic-
tions in that beliefs about signal precision should not enter players’ estimates
in the first turn. Convergence in estimates occurs in both treatments; β̂2 and
β̂2 + β̂3 are statistically different from zero. However, the rate of convergence
is substantially lower in the OCT compared with the BLT, as β̂3 is positive and
statistically different from zero.

Consistent with these results, I find that the level of estimates’ dispersion
is different across treatments. Rows 1 and 7 of Table 2 show that estimates’
dispersion is higher in the OCT than in the BLT, with the exception of the first
turn. As predicted by the model (see Proposition 5), subjects’ confidence does
not enter their first turn estimates, and thus, no difference is observed. In turns
two to four, estimates’ dispersion in the OCT is roughly twice as high as in the
BLT. Nonparametric tests confirm these observations. The last row in Table 2
reports the p-values of testing for treatment effects.

4.2.2 Excess level of estimates’ dispersion. The analysis so far suggests
that subjects form estimates that are further apart in the OCT than in the BLT,
and that while these estimates get closer together as a result of interaction, the
rate of convergence is lower in the OCT. These findings are consistent with the
results discussed in Section 4.1, which suggest that subjects in the OCT are
overconfident while those in the BLT are not.

But, are the results in the BLT consistent with the level predictions of the fully
rational model? To answer that, I use the information held by subjects in each
round to compute turn-by-turn predicted estimates and estimates’ dispersion.
Rows 2 and 8 of Table 2 report the level of estimates’ dispersion derived from the
fully rational model discussed in Section 2.2. This model serves as a baseline,
and thus does not allow for the possibility of either overconfidence or errors.
Rows 6 and 12 in Table 2 report the p-values from testing equality between fully
rational predictions and observed levels for the BLT and OCT, respectively. It
may not be surprising to find that in the OCT, estimates’ dispersion levels are
in excess of those predicted by the fully rational model. After all, one would
expect these results from subjects’ overconfidence. It is more surprising to find
that estimates’ dispersion levels are higher than predicted in the BLT too, while
I find no evidence of overconfidence among subjects in that treatment.

I argue that these deviations from the fully rational predictions are consistent
with subjects’ best response to errors in others’ estimates. To explore this
possibility, I approximate the best response function, discussed in Section 2.4,
which suggested that

a∗
i,2 = qi si + (1 − qi )(a j,1 + �(si , a j,1, ·)), (7)
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where �(si , a j,1, ·) is a term that adjusts the observed estimate, a j,1, based on
player i’s signal, player j’s estimate, and player j’s expected estimate error (see
Figure 1 for an illustration). Since the functional form of � interacts observed
variables with unobserved variables in a way that does not allow for linear
estimation, I approximate this function using a cubic function around si − a j,1.
This allows estimation of the following linear model:

ai,n,2 = α + β1si,n + β2a j,n,1 + β3(si − a j,1)3 + εi,n. (8)

The model in Equation (5), which allows for the possibility that subjects
are overconfident, I also extended to account for the possibility that subjects
“discount” others’ estimates. The coefficient β3 captures the steepness of this
“discount.” Under the null, β3 is equal to zero.

Columns 3 and 4 in Table 1 report the result for the BLT and OCT. In both
treatments, I find evidence consistent with rational response to errors. The
coefficient associated with the term si − a3

j,1 is different from zero at the 1%
level. Further, this coefficient is positive as predicted by the rational response
to errors alternative. At the same time, this channel does not eliminate the
overconfidence observed in the OCT, as β̂1 is substantially higher in the OCT,
compared with the BLT, and exceeds 0.5, indicating that subjects assign too
high a weight to their own signal in the OCT. In other words, I am able to
separate overconfidence from the rational response to errors and show that both
affect subjects’ estimates.

5. Summary

In this article, I suggest a simple information aggregation game through which
I study—theoretically and empirically—how participants aggregate multidi-
mensional private information together with information learned indirectly
from observing others’ actions. In order to distinguish two widespread behav-
ioral biases, erroneous actions, and mistaken beliefs, I combine an experimental
design, which controls for the presence of overconfidence, and a model that
nests both biases. By doing so, I am able to measure subjects’ confidence, in
both variants of the experiment, along with their responses to errors.

I am able to estimate subjects’ implicit overconfidence. I find that the treat-
ment induces overconfidence in one set of sessions but not in the other. Taking
advantage of this difference, I establish the effect of overconfidence by showing
that it gives rise to more dispersed estimates and to a lower rate of estimates’
convergence. At the same time, I find support for the second form of deviation
from full rationality errors in actions. In both treatments, subjects appear to
respond to others’ mistakes in forming their own estimates.

This article contributes to the existing literature in a number of ways. First,
it suggests a theoretically tractable mechanism that can be used to study how
individual biases affect information aggregation. This can be pursued further
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by changing the structure of information: one can introduce public announce-
ments alongside private signals and replace exogenous endowment of private
signals with an endogenous acquisition of information.17 Second, it provides a
laboratory implementation in which subjects are endowed with private signals
and private signal precision, and shows how to turn the latter into a treatment
variable. Third, it shows how the fully rational model can be extended to incor-
porate different deviations from rationality and how it can be used for empirical
identification.

Appendix

A.1 Proofs

Proof of Proposition 1. Assume that player j follows a∗
j,t . I will show that player

i’s dominant strategy is also characterized by a∗
i,t . In turn three, Ii,3 = {si , qi , a∗

j,1, a∗
j,2} =

{si , qi , s j , q j } since a∗
j,1 = s j , and since {a∗

j,1, a∗
j,2, ai,1} can be used by player i to back

out q j . Hence, player i has full information and she can do no better to submit a∗
i,3 =

E[v|Ii,3] = Ind
(qi >

a j,2−ai,1
a j,1−ai,1

)
si + Ind

(qi <
a j,2−ai,1
a j,1−ai,1

)
a j,1 + Ind

(qi =
a j,2−ai,1
a j,1−ai,1

)
(

si +a j,1
2 ) = Ind(qi >q j )si +

Ind(qi <q j )s j + Ind(qi =q j )(
si +s j

2 ) = v a.s. In turn two, Ii,2 = {si , qi , s j }. Given that in turn
three, player i knows the fundamental value (a.s.), he can do no better than act myopically
in turn two. Therefore, a∗

i,2 = E[v|Ii,2] = Pr(h|Ii,2)E(v|Ii,2, h) + (1 − Pr(h|Ii,2))E(v|Ii,2, l) =
qi si + (1 − qi )s j . In turn one, player i will act myopically and submit a∗

i,1 = E[v|Ii,1] =
Pr(h|Ii,1)E(v|Ii,1, h) + (1 − Pr(h|Ii,1))E(v|Ii,1, l) = qi si + (1 − qi )si = si since by deviating she
would reduce own payoffs without changing the information that can be extracted from player j’s
actions.

Proof of Proposition 2. I use backward induction for this proof. Since the myopic best response
equilibrium maximized expected payoffs at each turn of the game separately, the player would
deviate from it only if they could increase future payoffs. Since turn three is the last turn, it follows
trivially that ai,3 = a∗

i,3. In turn two, assume that ai,2 	= a∗
i,2. Since E(ui,2(ai,2)) < E(ui,2(a∗

i,2)),
it must be the case that E(ui,3(a∗

i,3(I (a j,2(ai,2))))) > E(ui,3(a∗
i,3(I (a∗

j,2(ai,2))))) but since ac-
tions are submitted simultaneously, this cannot hold. Thus, in turn two, a∗

i,2 = E(v|Ii,2). In
turn one, assume that ai,1 	= a∗

i,1 ⇒ E(ui,2(ai,1)) < E(ui,2(a∗
i,1)), so it must be the case that

E(ui,3(a∗
i,3(I (a j,2(ai,1))))) > E(ui,3(a∗

i,3(I (a j,2(a∗
i,1))))) but since turn three actions arrive at full

information revelation (a.s.), this cannot hold.

Proof of Proposition 3.

ED1 = |si − s j | = |e j | > 0 a.s.
ED2 = |qi si + (1 − qi )s j − (1 − q j )si − q j s j | = |(1 − qi − q j )s j − (1 − qi − q j )si |

= |(1 − qi − q j )(s j − si )|.
Since −1 ≤ (1 − qi − q j ) ≤ 1 and −e j ≤ (s j − si ) ≤ e j , we get

|(1 − qi − q j )e j | < |e j | a.s. (notice that qi + q j need not equal 1).

Also, since a∗
i,3 = a∗

j,3, ED3 = 0.
Thus, ED1 > ED2 > ED3 = 0.

17 This topic has been of interest to a large body of empirical literature that documents underreaction to public
announcements, such as earning releases, and the theoretical literature that suggest a role for overconfidence in
this (e.g., Bondt and Thaler 1985 and Jegadeesh and Titman 1993).
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Proof of Proposition 4. Replacing qi with q̃i and q j with q̃ j , and following the Proposition 3
proof, I get that

� EDM
1 = |si − s j | = |e j |;

� ED2 = |1 − q̃i si − q̃ j )||s j − si | = |1 − (qi + q j ) − (MCi + MC j )||e|;
� EDM

3 = 0 (a.s.).

Proof of Proposition 5. For turns one and three, the proof is trivial.
For turn two, recall that

EDM
2 = |1 − (qi + q j ) − (MCi + MC j )||e| ∝ |1 − (qi + q j ) − (MCi + MC j )|, since |e| ≥ 0.

Denoting (qi + q j ) ≡ qi j and (MCi + MC j ) ≡ MCi j , and squaring both sides of the expression,
I get

(
EDM

2

)2 = (1 − qi j − MCi j )
2(s j − si )

2 = (1 − qi j − MCi j )
2(e j )

2.

To find the parameter value ranges for which the dispersion of estimates is increasing, take a
derivative with respect to

MCi j :
d
(
EDM

2

)2

dMCi j
= −2(e j )

2(1 − qi j − MCi j ),

which is increasing if qi j + MCi j − 1 > 0. Since in expectations qi j = 1, E(EDM
2 ) is increasing

in MCi j if players are on average overconfident.

A.2. Derivation of optimal actions for the general case
In this section, I derive players’ optimal actions in each turn of the game under the general case.
Since players’ strategies are symmetric, I abuse notation and drop players’ identification subscript
when appropriate.

In turn one, optimal actions are

E[v|si , qi ] = Pr(h|si , qi )E(v|si , qi , h) + (1 − Pr(h|si , qi ))E(v|si , qi , l).

Computing each of these terms separately, I get

Pr(h|qi , si ) = q
/( 2Y

min(si + Y, H )−max(si − Y, L)

)
= qi (min(si + Y, H ) − max(si − Y, L))

2Y
.

E(v|si , qi , h) = si .E[v|si , qi , l] =
∫ min(si +Y,H )

max(si −Y,L)

1

min(si + Y, H ) − max(si − Y, L)
xdx

= 1

2
(max(si − Y, L) + min(Y + si , H )).

That is, conditional on being a type l player, v is distributed uniformly around the signal si .
The intuition is that in the interior case (si ∈ [L + Y, H − Y ]), player i is uniformly distributed
around v and v is drawn uniformly. Around v’s distribution boundaries, the distribution mass is
being reallocated uniformly.

To summarize,

a∗
1 = q(min(s + Y, H ) − max(s − Y, L))

2Y
s +

(
1 − q(min(s + Y, H ) − max(s − Y, L))

2Y

)

×
(

1

2
(max(s − Y, L) + min(Y + s, H ))

)
,
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Figure A.2
Turn one posterior
The figure depicts an example for the turn one posterior a player forms given the signal they receive.

which in the interior case (si , s j ∈ [L + Y, H − Y ]) simplifies to

a∗
1 = s.

Figure A.2 depicts the posterior as a function of the signal, where v ranges from 50 to 950,
signal dispersion is set to 30 (i.e., Y = 30), and q = 2/3. For most of the domain, the posterior is
equal to the signal. If the signal is sufficiently close to the “edges,” the posterior tapers off. It is
important to note that for all possible signals, the posterior is a monotonic function of the signal.

At the end of turn one, ai,1 and a j,1 are announced. Therefore, turn two optimal actions are

a∗
i,2 = E(v|Ii,2) = E(v|{si , qi , a∗

j,1}) = Pr(h|si , qi , a∗
j,1)si + (1 − Pr(h|si , qi , a∗

j,1))

×E[v|l, si , qi , a∗
j,1],

where

Pr(h|si , qi , a∗
j,1) =

∫ min(si +Y,H )

max(si −Y,L)
Pr(h|si , qi , s j ) Pr(s j |a∗

j,1(s j )
−1)ds j

and a∗
j,1(s j )−1 is the inverse function of player j’s turn one actions with respect to her q j .

Therefore,

a∗
i,2 = E[v|l, si , qi , a∗

j,1]

=
∫ min(si +Y,H )

max(si −Y,L)

( ∫ max(si ,s j )

min(si ,s j )
(Pr(v|l, si , qi , a∗

j,1)v)dv

)
ds j

=
∫ min(si +Y,H )

max(si −Y,L)

( ∫ max(si ,s j )

min(si ,s j )
(Pr(v|l, si , qi , s j ) Pr(s j |a∗

j,1(s j )
−1)v)dv

)
ds j .

Since a∗
j,1(s j )−1 cannot be explicitly derived, the close-form solution to a∗

i,2 is difficult to obtain.
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By the end of turn two, all information is revealed (a.s.). Therefore, optimal action in turn three is

a∗
i,3 = Ind

(qi >
a j,2−ai,1
a j,1−ai,1

)
si + Ind

(qi <
a j,2−ai,1
a j,1−ai,1

)
a j,1 + Ind

(qi =
a j,2−ai,1
a j,1−ai,1

)

(
si + a j,1

2

)
, a∗

j,3.

A.3. Derivation of turn two optimal actions
Generally, it is easy to show that if x, y, z are r.v., then

Pr(x |y, z) = Pr(y|x, z) Pr(x |z)

Pr(y|z)
.

Therefore,

Pr(s2|a21, s1) = Pr(a21|s2, s1) Pr(s2|s1)

Pr(a21|s1)
.

Calculating the elements of this expression, I get

� Pr(a2,1|s2, s1) = Pr(a2,1|s2) = φ(a21 − s2; 0, σ1);
� Pr(s2|s1) = 1

2Y .

However,

Pr(a21|s1) =
s1+Y∫

s1−Y

1
2Y φ(a21 − s2; 0, σ1)ds2

=
√

4π erf
(

1
σ1

(
1
2 Y

√
2− 1

2 s1
√

2+ 1
2 a21

√
2
))

1
8
√

πY

−
√

4π erf
(

1
σ1

(
1
2 a21

√
2− 1

2 s1
√

2− 1
2 Y

√
2
))

1
8
√

πY

= 1
4Y

(
erf

( √
2

2σ1
(Y − s1 + a21)

) − erf
( √

2
2σ1

(a21 − s1 − Y )
))

.

Collecting these terms, I obtain

E(s2|a21, s1) = ∫ s1+Y
s1−Y s2 Pr(s2|a21, s1)ds2

= ∫ s1+Y
s1−Y s2

φ(a21−s2;0,σ1) 1
2Y

1
4Y

(
erf

( √
2

2σ1
(Y−s1+a21)

)
−erf

( √
2

2σ1
(a21−s1−Y )

)) ds2

=
−√

2
(

1
2 σ1

√
2e

− 1
2

a2
21
σ2

1
(
−σ1

√
2 exp

(
a21
σ2

1
(Y+s1)− 1

2σ2
1

(Y+s1)2
)
−√

πa21e

1
2

a2
21
σ2

1 erf
(

1
2

a21
σ1

√
2− 1

2σ1
(Y+s1)

√
2
))

√
πσ1 erf

(
1
σ1

(
1
2 a21

√
2− 1

2 s1
√

2− 1
2 Y

√
2
))

−√
πσ1 erf

(
1
σ1

(
1
2 Y

√
2− 1

2 s1
√

2+ 1
2 a21

√
2
))

+
√

2
(

1
2 σ1

√
2e

− 1
2

a2
21
σ2

1
(
−σ1

√
2 exp

(
a21
σ2

1
(s1−Y )− 1

2σ2
1

(s1−Y )2
)
−√

πa21e

1
2

a2
21
σ2

1 erf
(

1
2

a21
σ1

√
2− 1

2σ1

√
2(s1−Y )

)))
√

πσ1 erf
(

1
σ1

(
1
2 a21

√
2− 1

2 s1
√

2− 1
2 Y

√
2
))

−√
πσ1 erf

(
1
σ1

(
1
2 Y

√
2− 1

2 s1
√

2+ 1
2 a21

√
2
))

= a21 +
e
− 1

2
a2

21
σ2

1
(
σ1

√
2
(

exp
(

a21
σ2

1
(s1−Y )− 1

2σ2
1

(s1−Y )2
)
−exp

(
a21
σ2

1
(Y+s1)− 1

2σ2
1

(Y+s1)2
)))

−√
π erf

( √
2

2σ1
(a21−s1−Y )

)
+√

π erf
( √

2
2σ1

(Y−s1+a21)
)

= a21 + 2σ2
1(φ(a21;s1−Y,σ1)−φ(a21;s1+Y,σ1))

erf
( √

2
2σ1

(Y−s1+a21)
)
−erf

( √
2

2σ1
(a21−s1−Y )

) .
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